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ABSTRACT 
 

 

Rainfall is generally regarded as the key driver for ecosystem processes, particularly 

important within the dynamics of semi-arid regions. Since the precipitation impacts the 

natural environment, human society and the economy, the paper applied rainfall 

forecasting to avail early warning patterns. The Waterberg rainfall data from 1895 to 2019 

was used to determine a better understanding of its pattern. This is necessitated because 

knowledge of rainfall patterns are required for reviewing production targets and a 

necessity for decision making in agriculture. Data shows that only 34% of the rainfall years 

accounted average rainfall, meanwhile 66% of rainfall years is either classified as above or 

below. Further, results show that the ENSO patterns follow a cyclical pattern, which 

corresponds to the local Waterberg rainfall. Econometric approaches postulate that there 

exists volatility of rainfall, effective rainfall, its intensity, cycles and the ENSO data. This 

paper shows that rainfall forecasting is possible when using a model that takes into account 

the variation in the ENSO, cyclical pattern and the accumulation of various rainfall cycles. 

A five year forecast shows that the current experienced drought cycle is coming to an end, 

and that the prospects of above average years will only persist for 2 years. We recommend 

that knowledge of the cyclical trend needs to be translated into reliable periodic 

statements to safeguard Namibia against future famines, possible food shortages and 

counter rising food prices. Although the methods are robust, they call for further research 

into the causes of dynamics of observed rainfall variability. 
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  Introduction 
 
 
Rainfall is generally regarded as key driver of 

ecosystem processes (Anderson et. al., 2007), and 

especially important within the vegetation 

dynamics of semi-arid regions. Because of the 

historic precarious circumstances, climate 

forecasting has been an active area of research 

since Sir Gilbert Walker discovered a relationship 

between large-scale atmospheric variability and 

rainfall in many parts of the world (Walker, 1923). 

Research emerged into weather forecast models, 

and scientists begin to understand weather and 

specifically rainfall patterns. The demand for 

seasonal rainfall forecasts has been increasing, 

and their usage has been established, for instance 

in water resources, food security, and coastal zone 

management (Cottrill et. al. 2013). Nowadays, the 

El Niño–Southern Oscillation (ENSO) is generally 

followed to detect the beginning of a cycle and its 

severity through models, such as seasonal 

performance probability (SPP) for Africa (Novella 

& Thiaw, 2016). It avails weather information, 

thus providing crucial information for decision-

making across different sectors (for example, Pal 

et. al. 2013; Siegmund et. al. 2015). Already in 

2012, meteorologists forecasted that southern 

Africa was entering a severe drought period 

consisting of 10 years. Unfortunately, this early 

warning was not followed and together with 

global warming, triggered activities with 

substantial negative direct impacts on the 

Namibian agriculture and indirectly on the 

regional economy at large.   

 

The purpose of this contribution therefor is to 

identify rainfall patterns and call for the 

incorporation ENSO effects into the planning and 

execution of national agenda.  
 

An early prediction and warning depend on the 

predicted rainfall amount (Winsemius, 2014, and 

Becker et. al., 2014), which has always been 

challenging to accurately forecast rainfall in 

practical (Hirata & Grimm, 2018).  It is believed 

that once the pattern is known, Namibian 

agriculture could benefit. Since the precipitation 

impacts on the natural environment, human 

society and the economy is affected. The 

question to be asked is how the rainfall affects 

the economic activities, since a drought can be 

defined differently from metrological, 

agricultural or hydrological perspectives. To 

assess the rainfall patterns, this paper will use 

metrological rainfall time series to investigate 

the existence of cyclical patterns, important for 

an early warning system. This could support 

sectors to know the beginning of an agricultural 

drought (Mishra & Singh, 2010). The vegetation 

requirements depend on availability of water, 

and not necessarily on rainfall. Therefore, the 

drought does not necessarily begin on the day 

that rain ceases, but rather when the soil 

moisture is drained. This brings us to the 

deficiency in total water supply as compared to 

the total water demand, which require 

knowledge of the general weather pattern, being 

more important than individual occurrences. It 

implies, that if the reservoir is filled, one dry 

period will not result into a drought, since the 

drought is only the consequence of the 

accumulated years’ effect. This principle not only 

occurs to water, but also to food security, 

environmental degradation, and economic 

hardship, knowledge on seasonal precipitation is 

important to provide an early warning to 

determine the occurrence of drought or non-

drought situations (Lin et. al., 2016). 
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  Historic review on rainfall patterns 

 

Rainfall patterns existed all time, but analysis 

generally could use data since the existence of 

record keeping.  Therefore, records of 

significance for both meteorological factors and 

streamflow go back at best for 75 to 100 years 

and in most cases only between 30 to 50 years. 

Since earlier cycles and patterns are unknown, 

predictions are limited. This gap was addressed 

through international research, deriving 

information on climatic changes from tree rings, 

ice cores and lake sediments. Various cycles have 

been identified by Chin (1978). Medium term ice 

core series for example showed that some 300 

years ago a little ice age period persisted for 

several decades and that for the past 100 years, a 

relatively warm climate pattern was observed. 

Longer time span series (Emiliani, 1966) showed 

that about 5 000 and 6 000 years ago, the world 

experienced its warmest period recorded. Cycles 

showed that it took about 40 000 to 70 000 years 

to reach a glacial maximum; the last one was 18 

000 years ago. Chin (1978) showed that it only 

took between 2 000 to 5 000 years to completely 

destroy the formed continental-sized ice sheet. 

Therefore, analysis show that it is likely that we 

are still in a warm trough within a long-term 

cycle, i.e. the current climatological variability 

might continue for at least the next few thousand 

years. 

 

Focusing on extreme droughts globally, the 

earliest recorded drought dates back to the year 

1540, when probably the worst drought took 

place in Central Europe without any precipitation 

for 11 months leading to temperature increases 

of 5 to 7 degrees above the normal. 

Recorded severe droughts occurred in India in 

1900, in Russia in 1921, China 1929, southern 

USA in the 1930’s and more recently reported 

for Kenya, Brazil, Australia, and other countries. 

On the other hand, excess precipitation showed 

increased frequency and intensity of extremes 

(Cohen et. al., 2014). The severity of these 

events varied. Nevertheless, the overall impact 

of these events would have been less critical 

once known to allow protective steps to have 

been taken place. Research findings from the 

Karoo, with a similar climate showed that their 

rainfall, concentration, and its seasonality are 

not random processes. Findings shows cyclic 

patterns, with rainfall explained as single or 

double cycles (Du Toit & O’Connor, 2014). These 

cyclical patterns are used in decision-making, as 

in the case of Australia, where pastoralists use 

seasonal climate forecasting as main driver for 

profitability (Cobon & Toombs, 2013). These 

patterns are not fully investigated for Namibia, 

as the South Atlantic convergence zone is less 

predictable than the intertropical convergence 

zone and that weather is affected by distance 

from oceans and altitudes (Barreiro et. al. 

2002,2005;Taschetto & Wainer, 2008). 

 

Methodology 

 

Descriptive statistics of the rainfall dataset 

 

Namibian receives rainfall in the summer 

months and generally receives more than 50% of 

the precipitation during January and February. 

The general rain comes from North East and 

declines towards the South West zones. 
Available annual precipitation data from central 

Namibia was used to illustrate historical rainfall 

pattern in Namibia. 
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Data from the Waterberg area were selected 

because of its completeness since 1895. Table 1 

provides an overview of the data used, while Figure 

1 shows the Waterberg rainfall variability of the 

annual rainfall in comparison to other rainfall 

stations, such as Windhoek and Kamanjab.   

 

Table 1:  Rainfall statistics of the Waterberg rainfall 
station (1895-2019) 

 
* Note: the coefficient of variation (CV) used in this 
analysis shows the variability of rainfall, defined as the 
standard deviation divided by the mean. 
 
 
The fluctuation between years is shown by the high 

percentage of CV. Specifically, it can be seen that 

only 33.9% of the years resulted in rainfall between 

393.2mm to 610.5mm.  Furthermore, Table 1 shows 

that the rainfall intensity in normal years are about 

10.2mm/day of precipitation, while below average 

rainfall years can be described as low intensity of 

7.8mm/day, which has a direct influence on the 

vegetation requirements. 

 

Moving averages were used to obtain general 

observations. The information shows that Namibia 

had droughts periods around 1902, 1920, 1933, 

1949, 1961, 1982, 1995 and presently probably the 

worst of all. Excessive rain occurred around 1910, 

1923, 1934, 1954 and 2011. It is interesting to 

observe that the different rainfall stations 

presented similar patterns, although the western 

location suggests to enter the dry period earlier. It 

can be observed, that the trough of dry years existed 

for at least some years. Although with some 

deviations, it appeared that the period between 

1900 and 2019 included 9 cycles of approximately 

13 years or 4 severe cycles of 28 years. If that is true, 

we almost reached the end of the trough of the 

current cycle. 

 

 

Figure 1: Moving averages of rainfall in Namibia1. 

 

Figure 2 presents the Waterberg annual rainfall in 

comparison to the ENSO effect (Kane, 2009), by 

applying a variable called the Southern Oscillation 

Index average (SOIA)2. This variable shows a 

significant but small correlation of 0.1752. To 

improve the correlation, we normalized the variable 

(see next section). 
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 This paper used a combination of approaches to 

quantify the volatility in the rainfall series, effective 

rainfall, its intensity, cycles and the ENSO data. The 

methodologies developed in this study investigates 

the rainfall series from 1895 – 2018.  

 

 

Normalising the outliners of variables 

 

To account for the oscillation in patterns of the rainfall 

series over time, the study developed a model to fit 

the series (see Figure 3). The following equation is 

used. 

 

Where 𝑅"	is rainfall in any season j, 𝛼% and 𝛽%  are 

parameters estimated in ordinary least regression, 𝛼' 

is the constant, N represent the total series size (years 

in the series)., K captures the number of prominent 

peaks in the spectrum of the rainfall series (see figure 

2), and 𝜃% the period of periods of oscillation at each 

of the 𝑚 = 1. . . 𝐾 peaks in the spectrum of the series.   

 

The variable actual rain presents the normalization of 

the Waterberg rainfall.  Its behavior illustrates a 

cyclical pattern data series is plotted in Figure 3, which 

shows that the actual rainfall mean seems to oscillate 

about 𝜃% = 34	𝑎𝑛𝑑	48		years, respectively. Equally, 

the accumulated rainfall cycle seems to oscillate about 

𝜃% = 31	𝑎𝑛𝑑	35		years, respectively. These types of 

oscillation indicate volatility in rainfall; i.e. in the 

periods of crisis volatility is much higher. This 

clustering of volatility is a typical feature of rainfall in 

the face of uncertainty, which require precise 

modeling and forecasting. 

 

 

Figure 2: SOIA across the year relative to actual 
rain for Waterberg3. 
 
 

 

Time series modeling 

 

Major improvements in the predictability of 

southern Africa's seasonal rainfall too place, 

specifically though the purely empirical-statistical 

approach and the dynamical approach to forecast 

rainfall. The statistical approach uses less 

computing resources and are based on 

relationships between the predicted and predictor 

variables (Shukla & Mooley, 1987, Krishnamurti et. 

al., 2002, Klotzbach & Gray, 2003, Sahai et. al., 

2003, Annamalai et. al., 2005, Duffy et. al., 2006, 

Kim & Kim, 2010, Ye et. al., 2015, and Gerlitz et. 

al., 2016), while the dynamical approach is based 

on predicted rainfall as consistent with other 

climate variables (Doblas-Reyes et. al., 2006, Saha 

et. al., 2006). These approaches resulted into 

atmosphere–ocean coupled global circulation 

models and regional climate models being used as 

tools for dynamical (seasonal) rainfall prediction. 

Generally, studies have moved towards dynamical 

seasonal prediction (Misra, 2004, Pattanaik & 

Kumar, 2010, Yuan et. al., 2011; Liu et. al., 2013, 

Becker et. al., 2014, Siegmund et. al., 2015, Jia et. 

al., 2015, and Osman & Vera, 2017). 
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 The data have a particular feature in that the 

behaviour of the series changes over time. For 

example, Sartorius von Bach and Kalundu (2019) 

pointed out that a long-term cycle of 23 years follows 

a shorter cycle of 13 years, which has led to drastic 

shifts in biomass and gross margin value. Although 

such dramatic breaks are rare, one has to be aware of 

such shocks. For Namibia, a semi-arid country, rainfall 

cycles affect changes in biomass per hectare, leads to 

changes in stocking rate and farming decisions over 

time. It is upon these cycles that lead to changes into 

farming and agribusiness decision making process. 

The cycles as per Figure 3 and 4 illustrates these 

periods of serious policy decisions for the semi-arid 

country. 

 

 

Figure 3: The A normalized actual rain cycle and the 
Waterberg rainfall 
 
 
Based Dyer and Tyson (1977) and others, findings of 

cyclical rainfall patterns in Southern Africa (Du Toit & 

O’Connor, 2014 and Kane, 2009), a time series of 

accumulation of various cycles were used to analyse 

the Waterberg rainfall.  This series called ACC, consists 

of 49-year, 21-year, 7-year and a 4-year cycles, and 

was normalized and presented in Figure 4. 

 

Figure 4: Cumulative rainfall cycles verse Waterberg 
rainfall 

Ordinary least Square estimation 

 

The next step was to develop econometric models 

to answer the postulation emphasized in this study. 

Firstly, the problem was based on the association of 

average rainfall and ENSO. It was argued here that 

the ordinary least squares (OLS) approach is 

sufficient to answer to the dependency of local 

rainfall patterns to the ENSO patterns (see Figure 3). 

This paper went further to explore the analysis in 

more robust dynamic modelling framework. OLS 

approach is precursor for underpinning a 

relationship that exists between regional rainfall 

periodicities, ENSO and cyclical pattern. Applying 

the concept of association, the OLS model was 

estimated to validate the claim that regional rainfall 

patterns is a function of ENSO and cyclical patterns. 

The assumptions are made in relation to the 

regression model is that they follow the Gauss-

Markov assumption. The nature of the general 

equation is formulated as: 

 

  (2) 

 

 

The logarithm of the Waterberg rainfall as 

dependent variable (LW) in Y was assumed to be 

explained by three exogenous variables (𝑋<) 

denoting its normalized rainfall cycles (ACC), Actual 

rain and the variable SOIA.	𝛽'	and	𝛽< , are 

parameters to be estimated, while 𝜀< is the 

disturbance term. The coefficient of each X variable 

provides an estimate of its influence on Y, 

controlling for the effects of all the other X variables 

(Dougherty 2012).  
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 Results and discussion 

 

Ordinary least Square model results 

 

Various approaches suggested in literature were 

selected before a robust model was found. The 

model summarized in Table 2 show F-statistics 

which is significant at 5 percent and adjusted R-

Squared indicated that about 83 percent of variation 

in rainfall patterns in Waterberg is explained by the 

variation in the ENSO, ACC and actual rain. The 

model is rid of any form of serial correlation because 

the Durbin-Watson is greater than 2. Further, results 

from the OLS estimation indicates that rainfall 

patterns in Waterberg is dependent on oscillations 

of ENSO pattern, and the cycles of domestic climatic 

patterns. The occurrence of the El Niño Southern 

Oscillation accounts for 21 percent of the effect on 

the local rainfall. 

 

Table 2: OLS result summary based on equation 2 

 
Note: * and ** denote that the variable is significant 
at 5 percent and 10 percent level, respectively. 
 
 
 
Model performance  

 

As stated in the method section, the model 

performance of individual behavioural equations 

were tested using both graphical and statistical 

techniques. The ability of a simulation model to 

correctly predict the key turning points in the actual 

data is an important criterion for model assessment 

(Lütkepohl & Krätzig (eds).2004). 

The graphical result for model adequacy test is 

illustrated in Figure 6. The visual inspection of the 

estimated single equations have demonstrated 

that all the remaining estimated models perform 

well in capturing the turning points in the actual 

values. Statistical methods were also used to 

evaluate the robustness of our estimated models. 

Statistical approaches that examine forecasting 

ability of models largely assess forecast error value, 

which is obtained as the deviations of the forecast 

value from the actual value. A model that produce 

a low error value is considered as a sign of good 

forecasting ability and the results are qualified for 

using for forecasting and policy purposes 

(Lütkepohl, & Krätzig (eds).2004). The forecast 

evaluation was carried out using in sample period 

by using the historical periods from 2001 to 2015. 

We employed different forecast statistics to 

evaluate how well our model captures the real 

actual values. Following Lütkepohl & Krätzig 

(eds).2004, the following seven statistical 

techniques namely Mean Average Error (MAE), 

Mean Average Percentage Error (MAPE), Root 

Mean Squared Error (RMSE), Theil Inequality 

Coefficient (U), Bias, Variance and Covariance 

proportions were employed to evaluate the 

forecasting ability of the individual equations. The 

specifications for the first four methods are 

described below. 

 
The Mean Average Error is computed as the 

average value of the absolute value of the error 

terms occurring in each period, and is given in 

equation 3: 

 

       (3)    
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On the other hand, the Mean Average Percentage 

Error (MAPE) captures the error in terms of 

percentage of the actual value. MAPE is calculated 

using equation 4: 

 

  (4) 

 

The Root Mean Squared Error (RMSE) is the 

standard deviations of the forecast errors. RMSE is 

computed using the following formula: 

 

  (5) 
 

 
The other statistical method to evaluate the 

forecasting ability is the Theil Inequality Coefficient 

(U) (Theil, 1967). The formula used to compute U is 

specified in equation 6. The numerator of the 

formula is the root mean squared errors. The Theil 

Inequality Coefficient lies between 0 and 1, with 0 

indicating a perfect fit. It is important to note that 

RMSE and MAE depend on scale of a dependent 

variable, while the next two statistics (MAPE and 

Theil Inequality Coefficient) are scale invariant. 

 

  (6) 

 

Bias proportion indicates how far is the mean of the 

forecast from the mean of the actual series. 

Likewise, variance proportion indicates how far is 

the variance of the forecast from the variance of the 

actual series. Covariance proportion measures the 

remaining unsystematic forecasting errors. It is 

important to note that the bias, variance and 

covariance proportions add up to one and are given 

as proportions out of 1. 

 

If the forecasts are said to be good, the bias and 

variance proportions should be small, which is the 

case in the estimated behavioural equation. The 

results for the forecast evaluation are given in 

Table 3. 

 

Table 3: Forecast evaluation for the estimated model 

 
Source: Model output 
 
The findings were fitted into Figure 5 to illustrate 

the actual and the forecast for the next 5 years 

(2019 to 2024). The reported forecast statistics 

value indicates that most of the forecast accuracy 

statistics using Theil’s Inequality Coefficient (U) 

produced results closer to zero, which is an 

indication for good model forecast. In addition, the 

mean absolute percentage error is around and 

below ten percent for the remaining models. 

Hence it can be concluded that the single 

behavioural model performs reasonably well in 

tracking the actual values and therefore can be 

used for forecasting and policy analysis. Once we 

make sure that the model is adequate in 

approximating the rainfall patterns and ENSO, it is 

possible to proceed to analyse rainfall outlooks and 

simulation for the prospects of above normal, 

normal and below normal rainfall and its 

implications for agriculture in Namibia. 

 

The forecast is depicted in figures 5 to 8. Figure 5 

shows the historical series from 1895 to 2018, and 

a 5-year forecast, that from 2019 to 2024. The 

individual figures are explained in the subsequent 

sub-section. 
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 with finding the strength and direction of the 

relationship (Beins & McCarthy, 2012).  

 

 
Figure 5: Depicts actual Waterberg rainfall and predicted 
rainfall 
 
 
The modeling led to forecasting for the Waterberg 

area, which could be applied to changes into 

farming and agribusiness decision making process. 

The forecast show that for 2020, a slightly below 

average rainfall (refer to Table 1) can be expected, 

followed by 2 years of above average rainfall. To 

understand the cyclical pattern, Figures 6 to 8 

extracted a 10-year period from Figure 5 to indicate 

how the selected normalized variables contribute to 

the forecast. The figures demonstrate the 

explanatory value towards the forecast of rainfall 

for Waterberg. 

 

 
Figure 6: Depicts SOIA and Waterberg rainfall 

 

 
Figure 7: Depicts actual rain and Waterberg rainfall 

 

 
Figure 8: Depicts ACC and Waterberg rainfall 
 

 

Conclusion 

 

Using the existing literature suggestions, the paper 

contribute towards the rainfall prediction in 

Namibia. From the data it is clear that only 34% of 

the years resulted into average rainfall, thus 66% of 

rainfall is either above or below. These patterns call 

for more informed knowledge to be incorporated 

into targeted agricultural output and resultant 

decision making. The analysis shows that the ENSO 

patterns significantly affects the rainfall patterns in 

Namibia. Specifically, it shows that the ENSO follows 

a cyclical pattern, which corresponds to the 

Waterberg rainfall. Other normalised variables 

indicate that rainfall pattern follows cycles. It is 

shown here that forecasting is possible, by using 

existing data to contribute towards improved 

decision making. The 5-year forecast indicates that 

the Waterberg area expects drought in the first 2 

years, then above average rainfall for at least 3 

years. The findings of this paper confirm the findings 

of Ganguli and Coulibaly (2017) who indicates that 

further long-term cyclical effects of rainfall, weather 

and global warming information will be required for 

repeated model-runs to point out additional effects. 

 

It is evident that further research is required for an 

early warning system of Namibia and the region. 

Knowledge of cyclical rainfall trends need to be 

translated into reliable statements about the 

likelihood of drought occurrences and the duration 

and its severity. 
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Such statements are of significant importance for 

the agricultural sector and national economic 

planning. Results emanating from rainfall 

periodicities can be used to safeguard against future 

famines, possible food shortages and to counter 

rising food prices. 

 
Although the methods used are robust, they call for 

further research into the dynamic causes of 

observed rainfall variability. Access to reliable data 

is called for. This paper helps in stimulating the 

debate about applicable ways of understanding the 

bigger climate mechanisms behind hydrologic 

extremes, where countries without large 

computational and financial support can tap into 

available forecasts (see Mason & Tippett, 2017). 
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